Transport and condensation of driven tracers in a narrow channel

David Mukamel

Asaf Miron, Harald A Posch

Asaf Miron, DM , H. A. Posch, JSTAT 063216 (2020) Asaf Miron, DM, J. Phys. A 54, 025001 (2021) Asaf Miron, DM, H. A. Posch, PRE 104, 024123 (2021)

Weizmann Institute of Science

KIAS, July 25-28, 2022

Single file dynamics

Particles in a narrow channel Diffusing symmetrically No overtaking

A tagged particle is sub-diffusing

 $\langle x^2\rangle \propto \sqrt{t}$

for wide enough channel which allows overtaking

diffusion is restored

 $\langle x^2\rangle \propto t$

no matter how small is the overtaking rate

Lattice model of single file dynamics (SSEP)

Driven Tracer – no overtaking

The dynamics of the tracer is that of single file:

Burlatsky, Oshanin et al (1992, 1997); Landim, Olla Volchan (1998); Benichou, et al (2013); Cividini, Kundu, Majumdar DM (2016);

Driven Tracer with overtake (particle exchange)

How does the dynamics change from single file to diffusive?

Naively one would expect a crossover to diffusive behavior at any exchange rates.

Main results

Single file dynamics is robust to exchange (overtaking) processes.

There is a phase transition at finite exchange rates from single file to diffusive dynamics.

The transition is continuous.

Multiple tracers: For a broad range of the model's parameters tracers strongly attract each other with an effective potential that grows linearly with the distance, $V(r) \propto |r|$.

Density profile at low average density

 $\bar{
ho} = 0.05$

p = 1.75, q = 0.25, p' = 0.25, q' = 1.75

Finite layer of particles accumulated ahead of the tracer

The density profile is localized

Density profile in the "single file" phase

(intermediate density)

The density profile extends throughout the system

Velocity vs density

L=4096

In the single file phase

Phase diagram

 $\delta = \frac{p-q}{p+q}$ hopping bias

exchange bias

Density profile

 $\rho_l = A + Be^{-cl}$

A, B, c are determined by the boundary equations and the average density

In the single file phase
$$c = \frac{a}{L}$$
 $v = O(\frac{1}{L})$
In the localized phase $c = 0(1)$ $v = 0(1)$
At the transition $c = b/\sqrt{L}$ $v = O(1/\sqrt{L})$

Mean-field approximation; solvable dynamical toy models

The profile coincides with the exact solution available for the case p = q' = 1, q = p' = 0Derrida, Lebowitz, Speer (2002) Blyth, Evans (2007) q'

MSD of the tracer in the SF phase

For p = q' = 1 q = p' = 0 the dynamics of the tracer is that of a biased random walker with time dependent rates decaying as $1/\sqrt{t}$

How do driven tracers interact?

What is the effective potential between two tracers mediated by the bath?

Mejia-Monaserio, Oshanin (2011) – pairing of tracers in 2d Kunster, Storm (2017) – formation of a plug in a cylinder Poncet, Benichou, Demery, Oshanin (2019) – attraction in dense single file

Attraction mechanism

+ outward moves - inward moves

$$\partial_t P_{n_0,n_1} = R^h_+ \left(P_{n_0,-1,n_{n_1}} - P_{n_0,n_1} \right) + R^h_- \left(P_{n_0,+1,n_1} - P_{n_0,n_1} \right) + R^x_+ \left(P_{n_0,n_1+1} - P_{n_0,n_1} \right) + R^x_- \left(P_{n_0,n_1+1} - P_{n_0,n_1} \right)$$

with boundary condition

 $P_{n_0,n_1} = 0$ for n_0 , $n_1 < 0$

 R_{+}^{h} , (R_{-}^{h}) Outward (inward) hopping rate R_{+}^{x} , (R_{-}^{x}) Outward (inward) exchange rate

e.g.
$$R_{+}^{h} = p(1 - \rho_{1}) + q(1 - \rho_{-k-2})$$

Attraction is easily understood for $p = O(1); p', q', q \ll 1; q' \ll p'$

 R^h_+ , R^x_+ may be estimated from the single tracer density profile R^h_+ , $R^x_+ \ll 1$

$$R_{-}^{h} = (p+q)\frac{n_{0}}{n_{0}+n_{1}} \quad R_{-}^{x} = (p'+q')\frac{n_{1}}{n_{0}+n_{1}}$$

Outward rates << Inward rates

$$\rho_{1} = \bar{\rho} \frac{p - (1 - \bar{\rho})(q - q')}{p \,\bar{\rho} + p'(1 - \bar{\rho})}$$
$$\rho_{-k-2} = \bar{\rho}$$

The resulting distribution (binomial):

$$P_{n_0,n_1} \propto \binom{n_0 + n_1}{n_0} a^{n_0} b^{n_1}$$
$$a = \frac{R_+^h}{p + q} \quad b = \frac{R_+^{\chi}}{p' + q'}$$

The tracers distance distribution $k = n_0 + n_1$

$$Q(k) \equiv \sum_{n_0+n_1=k} P_{n_0,n_1}$$

$$Q(k) \propto (a+b)^k$$

Linear effective potential

$$\int \beta V(k) \propto |k|$$

 $Q(k) = (1-a-b)e^{q(k)\ln(a+b)} \qquad q(k) = k$

The results of the 1d model compare well with the hard disks model in a channel

• The 2d model exhibits only the localized phase of the single tracer

It displays strong attraction between tracers

$$\dot{\boldsymbol{r}} = \boldsymbol{v}$$

$$\dot{\boldsymbol{v}} = -\gamma \boldsymbol{v} + \sqrt{2\gamma k_B T} \boldsymbol{\xi} + (\boldsymbol{F}) + \{coll\}$$

Summary

 Unlike the case of non-driven tracer: single file dynamics is robust to overtaking (particle exchange)

- Continuous transition between the two phases
- Strong attraction between tracers with $V(k) \propto |k|$ and condensation.